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• Automatic Identification System (AIS) in-
creasingly used for marine conservation.

• Introduce 2 novel vessel traffic data col-
lection systems complementary to AIS

• Quantify uncertainty using AIS to repre-
sent marine vessel associated threats

• Uncertainty quantified in space and time
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An increasing number of marine conservation initiatives rely on data from Automatic Identification System (AIS) to
informmarine vessel traffic associated impact assessments and mitigation policy. However, a considerable proportion
of vessel traffic is not captured byAIS inmany regions of the world. Herewe introduce two complementary techniques
for collecting traffic data in the Canadian Salish Sea that rely on optical imagery. Vessel data pulled from imagery cap-
tured using a shore-based autonomous camera system (“Photobot”) were used for temporal analyses, and data from
imagery collected by the National Aerial Surveillance Program (NASP) were used for spatial analyses. The photobot
imagery captured vessel passages through Boundary Pass every minute (Jan–Dec 2017), and NASP data collection oc-
curred opportunistically across most of the Canadian Salish Sea (2017–2018). Based on photobot imagery data, we
found that up to 72 % of total vessel passages through Boundary Pass were not broadcasting AIS, and in some vessel
categories this proportion was much higher (i.e., 96 %). We fit negative binomial General Linearized Models to our
photobot data and found a strong seasonal variation in non-AIS, and a weekend/weekday component that also varied
by season (interaction term p < 0.0001). Non-AIS traffic was much higher during the summer (Apr–Sep) and during
the weekend (Sat-Sun), reflecting patterns in recreational vessel traffic not obligated to broadcast AIS. Negative bino-
mial General Additive Models based on the NASP data revealed strong spatial associations with distance from shore
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(up to 10 km) and non-AIS vessel traffic for both summer and winter seasons. There were also associations between
non-AIS vessels and marina and anchorage densities, particularly during the winter, which again reflect seasonal rec-
reational vessel traffic patterns. Overall, our GAMs explained 20–37% of all vessel traffic during the summer and win-
ter, and highlighted subregions where vessel traffic is under represented by AIS.
1. Introduction

Approximately 80 to 90 % of global trade relies on marine vessels,
reaching an estimated 10.7 billion tons shipped in 2018, and with an esti-
mated compound growth rate, shipping is expected to double in two de-
cades (UNCTAD, 2018). There are a number of conservation challenges
associated with marine traffic, but until recently high resolution spatial
temporal information on marine vessels, and hence, associated maritime
activity has been lacking (see Robards et al. (2016) for a review). Automatic
Identification System for ships (AIS) was initially developed as a tool for
vessel collision avoidance under the United Nations International Maritime
Organizations (IMO) International Convention for the Safety Of Life At-Sea
(SOLAS Regulation V/19: https://www.imo.org/en/OurWork/Safety/
Pages/AIS.aspx). However, AIS also provides a rich dataset with high spa-
tial and temporal resolution that can now be used to track and observe ves-
sel activity anywhere in the world with clear applications in enhanced
situational awareness (Lensu and Goerlandt, 2019). Aswell, marine conser-
vation oriented researchers and managers increasingly utilize AIS to better
understand threats and stressors associated with marine vessel traffic and
mitigate against potential impacts from these threats. Indeed, there has
been a sharp increase in the rate of research published in the last half a de-
cade assessing threats to marine ecosystems associated with marine vessel
traffic that are based at least partly, on AIS data. These recent publications
have focused on threats such as illegal discharges of hydrocarbons and
other pollutants (Bertazzon et al., 2014; Serra-Sogas et al., 2014;
Rudebusch et al., 2020; Jalkanen et al., 2021; Liu et al., 2021b), ship strikes
(Nichol et al., 2017; Blondin et al., 2020; Ebdon et al., 2020), invasive spe-
cies (Iacarella et al., 2020a), air pollution emissions (Toscano et al., 2021),
noise pollution (Erbe et al., 2012; Jones et al., 2017; Hermannsen et al.,
2019; Cominelli et al., 2020), fisheries (McCauley et al., 2016), and physi-
cal impacts (i.e., anchoring: Deter et al. (2017). As well, AIS has been used
as a basis for impact models producing generalized ecological stress indica-
tors (Liu et al., 2021a), and to develop policy and mitigation strategies
(McWhinnie et al., 2021).

Although AIS provides extremely useful information on marine vessel
traffic, the system was not developed for marine conservation, and using
these data for conservation purposes comes with some important challenges
(see Robards et al. (2016) for a review). Probably the most important chal-
lenge is that not all vessels are required to carry and broadcast AIS, resulting
in an uneven representation among vessel classes. In Canada, vessels over
300 t or 150 t with 12 or more passengers, with the exception of fishing ves-
sels, were required by legislation concurrent with data collection for this
study (2015–2017) to carry AIS (https://gazette.gc.ca/rp-pr/p2/2019/
2019-05-01/html/sor-dors100-eng.html), whereas in the U.S., all commer-
cial fishing vessels were required to carry AIS-B at least (https://www.
navcen.uscg.gov/?pageName=AISRequirementsRev). These legal require-
ments have resulted in a large proportion of the fishing fleet and most of
the recreational boats being underrepresented by AIS (Serra-Sogas et al.,
2021).

Iacarella et al. (2020b) explored a variety of data sources that could be
complementary to AIS. The Vessel Monitoring System (VMS) is an alterna-
tive vessel tracking data source to AIS that is used to track fishery vessels
and monitor commercial fishing activity in Canada, but VMS is considered
a closed system with highly restricted access (McCauley et al., 2016). This
lack of access coupled with large inconsistencies in VMS requirements
among regions within Canada (Iacarella et al., 2020b) makes this vessel
tracking system a difficult tool to use for general conservation purposes.
None of the dedicated systems available in Canada for monitoring vessel
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traffic (including AIS) sufficiently capture recreational and fishery vessel
traffic in Canadianwaters (Iacarella et al., 2020b), and becauseAIS carriage
is largely voluntary in these vessel classes, it is difficult to estimate the pro-
portion transmitting AIS. This lack of information on these vessel types is
also noticeable at the global scale, as demonstrated in a recent publication
byMarch et al. (2021). In lieu of consistent data from recreational and fish-
ery vessel traffic, understanding and quantifying impacts from some threats
such as noise (Hermannsen et al., 2019) and oil pollution (NRC, 2003; Fox
et al., 2016) would suffer from imprecision, leading to inaccurate assess-
ments, and therefore, conservation efforts aimed at managing and mitigat-
ing against these threats would be under-informed.

There is a comprehensive suite of available techniques for collecting
data on vessel traffic activity from systems that are complementary to
AIS. These techniques often involve the integration of AIS data (typically
collected in situ) with vessel data extracted from AIS-independent sources,
such as land-based radar (Barco et al., 2012), land-based radar coupled
with optical imagery (Cope et al., 2020), satellite-based radar and optical
imagery (Aiello et al., 2019), passive acoustics and land-based optical imag-
ery (Merchant et al., 2014), and optical imagery collected from aerial sur-
veillance aircraft (Serra-Sogas et al., 2021). Vessel data extracted from
optical imagery captured with land-based camera systems have also been
used to extend estimates of fishing activity data from either or both land-
based questionnaire surveys and aerial surveys (Smallwood et al., 2012;
Morrow et al., 2022); however, these studies typically do not integrate
AIS as they focus on vessel traffic that is not required to carry AIS. Aerial
survey techniques used to characterize vessel traffic in space and time
were developed prior to the implementation of AIS (James et al., 1971;
Ashton and Chubb, 1972), and more recently passive acoustics (Tesei
et al., 2020) and survey questionnaires (Gray et al., 2011) have also been
employed without integration of AIS data. Currently, aerial surveillance re-
mains one of the best options for collecting data complementary to AIS and
other traffic monitoring systems in Canada (Iacarella et al., 2020b), and a
recent study introduced a novel technique that integrates AIS data and ves-
sel data pulled from optical imagery collected by aircraft operated byTrans-
port Canada’s National Aerial Surveillance Program (NASP: Serra-Sogas
et al., 2021).

There are essentially three principal sources of uncertainty when using
AIS as a proxy for a threat or stressor associated with marine vessels: 1) the
proportion of vessel traffic captured by AIS (primary focus of this study);
2) the contribution of non-AIS traffic to the focal threat; and 3) accuracy
of information contained in AIS data. Complementary marine vessel traffic
data collected independently from AIS can be used to estimate the first
uncertainty (proportion of vessel traffic missed by AIS), aiding in the inter-
pretation of results from models estimating threat levels based entirely on
AIS, including assessing their applicability to inform policy or conservation
initiatives (Merchant et al., 2016). These data also can be critically impor-
tant for directly informing policy makers and managers in marine spatial
planning (Serra-Sogas et al., 2021), particularly in areas with intense recre-
ational and fishery vessel traffic. Here we extend the technique developed
by Serra-Sogas et al. (2021), by building separate spatial distributions for
AIS and non-AIS vessels that extend across the Salish Seafitting Generalized
Additive Models (GAMs) based on AIS data and vessel information pulled
from optical imagery collected by NASP. As well, we introduce a novel
data collection technique using a semi-autonomous land-based optical cam-
era system (referred to as Photobot from here on) that integrates AIS data
collected in situ (on the same site) with vessel traffic data pulled from opti-
cal imagery collected in a navigationally restricted area of the Salish Sea
(see Fig. 1: Boundary Pass). With both these techniques, we were able to
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Fig. 1. Study region and location of AIS-Camera system (“Photobot”) on south east point of Saturna Island. Field of View (FoV) of the Photobot is depicted as a triangle
overlooking Boundary Pass from Saturna Island towards Waldron Island (right panel). TSS = Traffic Separation Scheme, EEZ = Exclusive Economic Zone.

P.D. O'Hara et al. Science of the Total Environment 865 (2023) 160987
build a more comprehensive understanding of vessel presence in the Salish
Sea that allowed us to explore AIS representation among the different vessel
classes across space and time, and discuss our results in terms of how they
might help interpret AIS-based threat assessments, and affect policy in-
formed by them.

2. Materials and method

2.1. Study area

NASP imagery covered most of the Canadian Salish Sea including Juan
de Fuca Strait, Haro Strait, Boundary Pass, Gulf Islands and Strait of Georgia
(Fig. 1). The POS imagery was collected overlooking Boundary Pass from
the southwest tip of Saturna Island at a location that was approximately
25 m above sea-level (see inset: Fig. 1).

2.2. Temporal variability from Photobot system overlooking Boundary Pass

2.2.1. Imagery and AIS data collection
We developed our Photobot as a semi-autonomous system for integrat-

ing AIS with optical imagery collected using an off the shelf digital camera
for collecting data on both AIS and non-AIS moving through navigational
bottlenecks such as Boundary Pass in the Salish Sea (Fig. 1). The Photobot
is centred around a single board computer (Raspberry Pi 3 or 4) and Python
script developed tomanage an array of optical cameras and an AIS receiver,
as well as archive imagery and vessel traffic data on an external USB hard-
drive. Everything is housed in a weather-proof enclosure with view ports
for the cameras. It was designed to be installed in remote locations with
solar power and an internet connection through an LTE router (a router ca-
pable of connecting to an LTE, “Long-TermEvolution” type of 4Gmobile in-
ternet) or a satellite link tomonitor systemhealth andmodify programming
via remote access (for a full system description of hardware, capabilities,
and available supporting software see Appendix A). At our study site, how-
ever, power and internet were provided by Saturna IslandMarine Research
and Education Society (SIMRES). Vessel traffic data presented here were
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pulled from imagery collected by a Canon Digital Single-Lens Reflex
(SLR) camera tethered (i.e., connected by means of a USB cable) to the
Raspberry pi (R-pi). The photobot was installed at around 35 m above
sea-level, and the SLR camera was set with a field of view (FoV) horizontal
angle of approximately 12 degrees (zoom lenswith a focal length of approx-
imately 45 mm) to capture vessel traffic moving through Boundary Pass
(Fig. 1). We found that 35 m was ideal for the installation height at our
location, which facilitated vessel classification (i.e., imagery of the sides
of vessels) and prevented vessels in the foreground from obscuring vessels
more distant from the camera. An FoV of 12 degrees was the best trade-
off for us, reducing the likelihood of missing vessels passing through the
FoV at high speed near the camera, while allowing us to identify small
vessels in the background. Open-source applications and libraries such as
gPhoto2 and libgphoto2 (http://www.gphoto.org/) were integrated into
the Python script to communicate directly with the camera using Picture
Transfer Protocol (PTP) specific to this brand and make of camera (see
Appendix A).

The photobot camera image acquisition rate was set to a burst of three
images per minute (i.e., set up using Raspberry pi python script described
in the supplemental material), with images separated by 5 s intervals dur-
ing each burst. Because the imagery was optical, acquisition occurred dur-
ing daylight hours only (adjusted automatically to account for changing
daylength). This acquisition rate resulted in approximately 2600 images
captured per day, with digital storage sizes of 5-11 MB per image. A large
external USB hard-drive (2 TB or larger) was used to house the imagery
data archived by the R-pi script. We incorporated the burst of three image
acquisition rate in part to conserve disk space, but also to facilitate the
auto-detection software we developed to process the large number of im-
ageswe collected during this and subsequent studies (see below).When vis-
ibility was fair or better (i.e., visibility of 5 km or more), the images
provided sufficient resolution to detect even small vessels (i.e., 5–10 m in
length) on the other side of Boundary Pass in our FoV, which is a distance
of approximately seven kilometers (Le Baron, 2021). To ensure consistent
unbiased sampling, we restricted our data collection and analyses to pe-
riods of time when visibility was sufficiently high to detect small vessels

http://www.gphoto.org/
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throughout the FoV. Nevertheless, we are far more likely to miss detecting
non-AIS vessel traffic using this methodology, and we emphasize that our
estimates of the proportion of non-AIS vessel traffic are conservative.

For this study, we relied on AIS data collected by the SIMRES AIS re-
ceiver that was located beside the camera enclosure and was made
available to download through the Ocean Networks Canada Data Search
portal (https://data.oceannetworks.ca/). It is important to note that AIS
data collected through land-based receivers are limited to the field of
view of the receiver, hence the need to collect in situ AIS data to couple
with vessels detected in our imagery. Although we relied primarily on
AIS data collected by SIMRES, AIS data from external yet proximate
land-based receivers were sometimes required to fill temporal gaps
due to periodic equipment failures at the study site. These externally
sourced AIS data were provided by Ocean Networks Canada, via the Ca-
nadian Coast Guards land-based receivers that typically provide a
greater field of view than most land-based receivers that are publicly
hosted (i.e., the SIMRES receiver as an example). AIS data was decoded
when necessary and geographically clipped to a geo-box encompassing
the camera's field of view.

2.2.2. Processing imagery and linking vessel traffic data to AIS data
The first step in processing the imagery was to manually review and

identify images with targets of interest. This was an intensive process re-
quiringmany person-hours because of the high number of images collected.
Although we have developed an autodetection software (Marques et al.,
2021) that greatly reduces processing time (Morrow et al., 2022; see Ap-
pendix A), all the imagery in this project was manually reviewed and im-
ages with targets were isolated for further data extraction. Once those
images were identified and isolated, we used a second python tool (the
AIS-Linker tool) that we developed to manually combine the AIS data
with vessel traffic in the imagery (see Appendix A for more information).
This script parsed the AIS data into subsets based on Maritime Mobile Ser-
vice Identity (MMSI) used as a unique identifier, and linearly interpolated
each subset of AIS positions into unique vessel tracks (associated with
MMSI). Based on the interpolated positions and the time-stamp of an
image, the script estimated the location of a vessel captured in an imagery
and superimposed the position of this estimated location on the same image
(Fig. A.2). The imagery time-stamp was assigned by the Pi computer with
an internal time chip (Real Time Clock or RTC) that was synchronized
with the internet. Imagery pixels are uniquely identified in the imagery
(x,y coordinate within the image frame) and were georeferenced using
known positions of land features in the FoV and interpolated pixel locations
based on the optical characteristics of the camera lens.

Because linking AIS broadcasting vessels with vessels in the imagery re-
lied on the time of image capture, the accurate interpolation of AIS posi-
tions, and the georeferencing of each of the imagery pixels, we included a
margin of error depicted as a length of the track overlaid on the imagery
on either side of the estimated current position (Fig. A.2). We then used
this tool to go through these images, identify which of the observed vessels
were broadcasting AIS, and link the information included in the AIS mes-
sages to the observed vessels broadcasting them. As well, this tool was de-
veloped to facilitate the manual documentation of non-AIS vessels, by
including their vessel class and activity, as well as the vessel relative posi-
tion within the imagery (pixel by pixel).

AIS tracks from broadcasting vessels were displayed where the vessel
met the waterline, which is an indication that the imagery was well cali-
brated with this python tool. Although AIS locations were reported using
the WGS84 geographic coordinate system, and our linker tool performed
using NAD83, the difference in the base ellipsoids between the two coordi-
nate systems apparently did not affect the positioning of target AIS vessels
in our imagery. All contacts were recorded in the tool when they were
first fully in frame and specific imagery pixels were labeled (using the soft-
ware above) where the vessel met the waterline. In the case of non-AIS ves-
sels, imagery pixels were labeled where the bow met the waterline and for
AIS vessels, pixels were labeled at thewaterline directly belowwherewe es-
timated the AIS transmitter was located (Le Baron, 2021). AIS and non-AIS
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vessels were classified based on vessel class assigned by AIS or frommanual
classifications from the imagery as follows: cargo vessels, tanker, tug, pas-
senger, government, fishing, ecotourism, sailboat, motor craft, and other.
Motor craft included small vessels that were motorized only (i.e., not a sail-
boat or human propelled craft) that were largely recreational, but this class
also included some small motorized vessels that were too distant to identify
them as government or ecotourism. We also noted if AIS vessels were trans-
mitting AIS-A (SOLAS compliant vessels) or AIS-B, which is a voluntarily
implemented AIS transponder that is typically less expensive than AIS-A,
and transmits at a lower power. We also identified wakes without target
vessels as an indication of the number of vessels we missed in our FoV dur-
ing our burst of three images captured per minute.

2.2.3. Mean daily vessel detection rates and proportion non-AIS vessel traffic,
and analyses

We processed a total of 693,611 images captured in 2017, and split
the vessel data into summer (Apr. - Sep.) and winter (Jan. - Mar. and
Oct. - Dec.). The number of images processed was fairly consistent
among days of the week (Table B.1), but varied by season because of
the longer day length during the summer months. There were far
fewer images processed during the month of April because equipment
failure during that month resulted in fewer images captured. Because
of the uneven distribution of images processed among months and sea-
sons, we controlled for effort by using either mean daily detection rates
(number of vessels detected per image per day) or mean daily propor-
tion non-AIS (daily number of non-AIS vessels/daily total number of
vessels detected). We fit a binomial Generalized Linear Model (GLM)
to the observed vessel detection rates to test for the effect of weekend
versus weekday and season using the statistical package R (version
4.1.1: R Core Team, 2021). Because we found an interaction between
season and weekend versus weekday effect, we ran pairwise detection
rate comparisons between weekend and weekdays within seasons, by
estimating marginal means (emmeans function with the R package
“emmeans”) that control for the effect of season.

2.3. Spatial variability in AIS versus non-AIS vessel traffic fromNASP data in the
Salish Sea

2.3.1. Imagery collection and data processing
The National Aerial Surveillance Program (NASP) of Transport Canada

conducted 74 aerial vessel surveys between August 13, 2015 andDecember
12, 2017 using a combination of visual and remote sensing surveillance.
The NASP operates a maritime surveillance system that allows concurrent
monitoring of AIS vessels on a moving map and a geopositioned, high res-
olution turret camera to investigate and document maritime activity.
Crews were provided with the study area and requested to conduct surveys
on a non-interference basis to their primarymission (pollution patrols). Sur-
veys were conducted during good visual flying conditions at an average
speed of 150 knots at altitudes ranging from 800 to 3500 f. depending on
operational requirement. The surveys commenced with the console opera-
tor taking a picture of themap of the survey areawith all AIS targets visible,
marking the time and starting the video recording. The crew visually
searched and called out all vessels observed while the console operator
honed and focused on each vessel, cross referencing with the map to de-
termine if it was transmitting AIS, and if it was not, zoomed the video in
to capture high resolution imagery of the vessel along with its location.
At the end of each survey, the recording was stopped and the operator
captured a second map image showing the flight track through the sur-
vey area and updated positions of all AIS vessel targets. The operator
also completed a survey form including the following data: survey
date, mission number, start and end times of the survey, estimated sur-
face wind speed, estimated swath visually covered, estimated percent of
non-AIS vessels captured on the video and any other comments about
the survey. Post flight, all survey data and imagery was compiled and
shared with an analyst for post-processing data extraction and analysis
(Serra-Sogas et al., 2021).

https://data.oceannetworks.ca/
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The video footage collected during each survey flight was reviewed
manually and data compiled into a database for each non-AIS vessel
sighted. The data compiled included the date, time, vessel position (latitude
and longitude), vessel class and activity (e.g., fishing, sailing, motoring).
The locations of AIS vessel targets were compiled from the console map im-
ages (jpeg), which were saved by the Surveillance Officer at the start and
end of each survey. The AIS target ID was matched with the NASP Mission
Report to acquire metadata on each AIS vessel detected by the aircraft AIS
receiver, including: theMMSI number, vessel class, length andflag. This da-
tabase was then imported to ArcGIS (version 10.6) to create a point
shapefile of non-AIS vessel sightings. Vessels were classified similarly as
above (see Serra-Sogas et al., 2021), but our spatial analyses (see below)
were based on classifications aggregated into 2 groups only: AIS and non-
AIS vessels. Unfortunately there were insufficient data to spatially model
the NASP data at the vessel class resolution.

Distance sampling methods were used to estimate the area effectively
surveyed by NASP or survey effort across the study area. First, the perpen-
dicular distance from each non-AIS vessel sighted to its corresponding sur-
vey flight path was estimated and then used to fit the detection function
with no other covariates. The detection function with the best-fit was
used to estimate the Effective Side Width or area effectively searched by
NASP when looking for non-AIS vessels. This value was then used to buffer
each survey flight path. Finally, a grid of the study area (composed of
2.5 km × 2.5 km grid cells projected in BC Albers Equal Area) was used
to estimate the aggregate area surveyed per cell (or NASP effort per cell)
by summing the total area of overlapping flight path buffers contained
within each cell. This distance sampling methodology was used to mini-
mize bias that favored the detection of larger vessels.

Consistent with our Photobot system data collection period, we split
NASP-based data into summer (Apr. - Sep.) andwinter (Oct. -Mar.) seasons,
and our analyses were based on detections for vessels that were underway.

2.3.2. Spatial modeling of NASP data
We fit negative binomial Generalized Additive Models (GAM, with

gamma = 1.4; see package ‘mgcv’ in r documentation; Wood 2021) with
a log link function to model the spatial distributions of non-AIS and AIS ves-
sel detections by NASP, during the summer and winter. We chose to spa-
tially model our NASP-based vessel data with GAMS as they are the most
common technique for creating density surfaces based on survey data col-
lected using distance sampling methods and processing (Thomas et al.,
2010). Predictor variables were created by assigning each grid cell centroid
with distance from shore, distance from recreational anchorages (from cell
centroid), density of marinas, NASP effort (total area surveyed per season),
and whether or not the centroid was located inside or outside of traffic
lanes, which are part of the marine traffic schemes assigned by Canadian
and US authorities. Both densities of marinas and locations of recreational
anchorages come from spatial data provided by the British ColumbiaMarine
Conservation (BCMCA: https://bcmca.ca/data/hu_tourismrec_marinas/
and https://bcmca.ca/data/hu_tourismrec_anchorages/). BCMCA classified
“coastal ecotourism lodge, fishing lodge, floating fishing lodge, harbour au-
thority/public wharf, harbour authority with marine fuel services, marina,
marina with marine fuel services, marine fuel services, private marina/
yacht club/yacht sales, Transport Canada public wharf and Transport
Canada public wharf withmarine fuel services” as marinas and coastal facil-
ities, which we collectively refer to as marinas in this manuscript. Marina
density in this study is simply the number of marinas identified by
BCMCA per 6.25 km2 (2.5 km × 2.5 km grid cell). We accounted for
NASP effort as a log-transformed offset variable. We also included centroid
location (in metres easting and northing) to capture spatial patterns not ex-
plained by the other variables as a bivariate spline in our GAMs, and we fur-
ther structured this variable by location relative to the traffic separation
schemes using the “by=” option in this bivariate spline. All other predictor
variables were included as univariate splines in the GAMs (except for NASP
effort), and we used AIC (Akaike Information Criterion) as a guide for num-
ber of smoothing knots (knots in a GAM not indicative of speed of a vessel)
used in each of the spline curve variables including the bivariate spline
5

(knots typically ranged between 10 and 20). We chose to fit the GAMs
using a negative binomial distribution based on results from the r package
“fitdistr”, and from comparing quantile-quantile plots using the function
“gam.check” in the r package “mgcv”. We constrained our analyses only
to grid cells with NASP survey effort during each season.

Using the best fit GAM for each season, we predicted both AIS and non-
AIS vessel traffic predictions onto the same 2.5 × 2.5 km grid we used for
the GAManalyses above, using a spatially even effort of 1 km2 among these
grid cells. Because our GAMswere constrained to include only the cells with
NASP survey effort, our GAM predictions varied in extent among seasons
(Figs. 3 & 4). For example, NASP effort extended across the Juan de Fuca
to include the US territorial waters during the winter but not during the
summer. The proportion of non-AIS vessel traffic was estimated by dividing
the GAM predicted non-AIS vessel traffic by the sum of the predicted non-
AIS traffic and AIS traffic.

3. Results

3.1. Temporal variability from Photobot system overlooking Boundary Pass

Overall, we detected and characterized 9475 vessels passing through
Boundary Pass during the calendar year 2017 (summer n = 8059; winter
n = 1416), based on either or both visual assessments of optical imagery
and AIS data collected in situ (Fig. 2& Table 1). Overall, a considerable pro-
portion ofmarine traffic travelling through Boundary Passwas not captured
byAIS, ranging from 25%non-AIS tracked vessels in thewinter (October to
February) to 72 % in the summer (May to September). Cargo, Tanker, and
Tug vessels were consistently and comprehensively captured by our in-situ
AIS receiver, particularly during the summer (only one Tug out of 113 not
captured by AIS). There were a few notable exceptions during the winter,
with 22 Cargo vessels out of 834 (3 %), four Tanker vessels out of 70 (6
%), and 11 Tugs out of 65 (17%) not capturedwith our in-situ AIS receiver.
AIS failed to capture a considerable proportion of the remaining vessel clas-
ses with non-AIS vessels representing as high as 96 % of vessels detected.
The most under-represented classes were identified as Fishing, Ecotourism,
Sailboat and Motor Craft vessels ranging from 67 to 96 % non-AIS.

Based on mean daily detection rates (number of vessels detected/im-
ages processed/day), the proportion of non-AIS vessel traffic was much
higher during the summer (Fig. 3& Table 2: 71–74%) than during the win-
ter (Fig. 3 & Table 2: 18–38 %). The strong seasonal variation was due
largely to an increase by an order of magnitude in smaller recreational ves-
sel traffic detected in both the Sailboat and Motor Craft classes during the
summer (Fig. 2). These classes included the highest number of vessel detec-
tions overall, and had the lowest proportion of vessels transmitting AIS. The
proportion of non-AIS vessel traffic also varied significantly from weekday
to weekend, but this variability was somewhat inconsistent between sum-
mer and winter (Fig. 3 & Table 2). In general, there was an increase in
the proportion of non-AIS vessel traffic on the weekends, but the greatest
proportional increase occurred in the winter when non-AIS traffic nearly
doubled.

It is important to note that not all vessels broadcasting AIS are legally
obligated to do so. Many vessels detected using our system are voluntarily
transmitting the lower power transmission AIS-B, and hence, tracking
these vessels using AIS is less reliable than for tracking vessels obligated
to transmit AIS-A. All of the commercial vessels in the Cargo, Tanker, and
Tug classes are transmitting AIS-A, whereasmost of the vessels transmitting
AIS in the Ecotourism, Sailboat, and Motor Craft classes are broadcasting
AIS-B (Table 1). Vessels broadcasting AIS in the Fishing class vary season-
ally in terms of broadcasting AIS-A or AIS-B, as many commercial fishing
vessels are not required to carry AIS in Canada opting to broadcast using
AIS-A or AIS-B (or neither).

Wake detections indicate the passage of a vessel that was not captured
in the imagery, and hence, could not be classified visually. Because we pro-
grammed the system to capture images every minute in a burst of 3 photos
separated by 5 s, we may have missed vessels in our imagery. Fast-moving
vessels passing close to the camera where the field of view is the narrowest

https://bcmca.ca/data/hu_tourismrec_marinas/
https://bcmca.ca/data/hu_tourismrec_anchorages/


Fig. 2.Variability in total detections by vessel class across the week and by season for January to December 2017 (summer=April – September; winter= January –March,
October – December). Note that the Cumulative Detection Rates differ by an order of magnitude between seasons, driven mostly by Non-AIS traffic variability.
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were most likely not captured in our imagery. We used wake as a means of
estimating the proportion of vessels missed in this way, and none of the
wakes captured by our imagery could be linked to a vessel broadcasting
AIS. This indicates that using this methodology, we may have
underestimated vessels not broadcasting AIS but this probability was rela-
tively low. The total number of vessels detected as wake only was 259
(Table 1), which represents 2.7 % of all vessels detected (259/9475),
with a much higher number of missed vessels in the summer (n = 257)
than the winter (n = 2), presumably because nearshore recreational activ-
ity was much higher during the summer.
Table 1
Vessel detections based on optical image assessments and AIS data collected in situ
during Winter (Oct. – Dec. and Jan. – Mar. 2017) and Summer (Apr. – Sep. 2017).
Cargo includes all types of cargo vessels including bulk carrier, container, and
tanker vessels. Passenger includes ferries and cruise ships. Number of images proc-
essed: summer = 157,878, winter =268,325. 3 % of vessels detected in winter
could not be identified as AIS or non-AIS.

Summer Winter

AIS class AIS class

A B Non-AIS A B Non-AIS

Type Total detected % % % Total detected % % %

Cargo 1055 100 0 0 807 97 0 0
Tanker 104 100 0 0 66 94 0 0
Tug 114 98 0 1 64 84 0 0
Passenger 19 89 11 0 5 60 40 0
Gov. 47 51 13 34 38 89 0 8
Fishing 315 8 1 91 29 10 7 83
Ecotourism 543 10 22 67 16 0 12 88
Sailboat 1856 0 12 88 161 0 21 79
Motor Craft 3721 1 11 88 172 2 2 96
Other 56 64 23 12 7 29 0 43
Wake 257 0 0 100 2 0 0 100
All 8108 19 9 72 1367 69 3 25
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3.2. Spatial variability in AIS versus non-AIS vessel traffic fromNASP data in the
Salish Sea

OurGAMs performedmoderatelywell, explaining 20 to 37%of the spa-
tial variability in detection rates of generalized (i.e., pooled among catego-
ries) non-AIS and AIS vessel traffic during the summer and winter (Table 3:
Deviance Explained) and based on data extracted from imagery collected
by NASP. Unfortunately we had insufficient data to model vessel classes
separately, hence our GAMs were constrained in their precision. All predic-
tor variables significantly explained spatial variability in AIS and Non-AIS
vessel traffic except for Density of Anchorages for AIS vessels in both sea-
sons. Significant spatial patterns or aggregations of traffic intensities that
were not associated with our predictor variables (Table 3: lat. and lon.
bivariate splines) existed inside and outside designated traffic lanes (Traffic
Separation Scheme) for both non-AIS and AIS vessels for both seasons, ex-
cept for non-AIS vessels inside lanes during the summer. These unexplained
spatial aggregations played a bigger role in determining model outcomes
during the summer than during the winter (except for non-AIS traffic inside
the shipping lanes).

The relationship between distance to shore and vessel detection likely
drives much of the spatial patterns we see mapped as GAM outputs (see
Figs. 4 & 5), where non-AIS vessel traffic and consequently, proportion
non-AIS, tends to occur closer to shore. Distance to shore was one of the
most important variables explaining spatial patterns in non-AIS vessels traf-
fic for both seasons, and was more important for predicting AIS traffic pat-
terns during the winter than for the summer (Table 3). Distance to shore
was particularly important for explaining vessel traffic variability within a
coastal strip that extended five to 15 km from shore (Fig. 5: there was dra-
matic increase in confidence intervals for trends beyond this point), except
non-AIS traffic during the winter where vessel traffic intensity continued to
decline with distance from shore beyond this coastal strip (Fig. 5). All de-
clines in predicted densities with distance from shore were similarly steep
up to five to 10 km, except for AIS vessel traffic in the summer. Beyond
10 km there was either no relation (non-AIS) with shore or a slightly



Fig. 3. Median daily detection rates (total vessels detected/total images taken per day) for AIS and Non-AIS vessels based on data pulled from Photobot imagery and AIS
receiver. Upper panel depicts mean daily detection rates by month and lower panel depicts detection rates for weekdays (Mon-Fri) versus weekends (Sat-Sun). Mid
line = median, box = 25/75 percentile, whiskers = 5/95 percentile, with outlier values as dots.
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increasing density (AIS). This shift in trends may indicate sub-groups of AIS
vessels with movement patterns that are not strongly affected by distance
from shore or may be intentionally moving away from coastal features.

Density of marinas was strongly associated with non-AIS and AIS traffic
patterns in both summer andwinter (Table 3), though it was somewhat less
important during the summer than the winter for non-AIS traffic. Oddly,
density of marinas partially predicts increasing non-AIS traffic in the sum-
mer to a point, then falls off rapidly to no relationship, while in winter
the relationship is strongly positive throughout the range of marina densi-
ties (Fig. 5), suggesting that non-AIS traffic movement patterns are more
7

tightly linked to marina locations during the winter than during the sum-
mer. The unexpected relationship between marina density and AIS vessel
traffic in the winter (Fig. 5), given that marinas refer to facilities supporting
mostly recreational and smaller fishing vessels, may either or both reflect
vessel classes within winter AIS traffic with movement patterns that relate
tomarina densities at different spatial scales. It is unclearwhy this pattern is
not consistent between seasons.

Density of anchorages, which also support mostly recreational vessels,
was strongly associated with summer non-AIS traffic patterns, less so for
winter patterns, and AIS traffic showed no association with anchorages in



Table 2
Summary of Generalized Additive Models (GAMs) for spatial distributions of vessel
detection probability based on imagery collected by NASP. NS: non-significant (p >
0.05); ‘*’ 0.05 > p > 0.01; ‘**’ 0.01 > p > 0.0001; ‘***’ p < 0.0001.

Spline (predictor variable) Summer Winter

Non-AIS AIS Non-AIS AIS

Lat., Long. (outside lanes) *** *** * *
Lat., Long. (inside lanes) NS *** * *
Distance to shore *** * *** ***
Density of marinas * ** ** **
Density of anchorages *** NS * NS
Deviance explained 29.1 % 21.5 % 36.7 % 20.0 %

Table 3
Summary of Generalized Additive Models (GAMs) for spatial distributions of vessel
detection probability based on imagery collected by NASP. NS: non-significant (p >
0.05); ‘*’ 0.05 > p > 0.01; ‘**’ 0.01 > p > 0.0001; ‘***’ p < 0.0001.

Summer Winter

Spline (predictor variable) Non-AIS AIS Non-AIS AIS

Lat., Long. (outside lanes) *** *** * *
Lat., Long. (inside lanes) NS *** * *
Distance to shore *** * *** ***
Density of marinas * ** ** **
Density of anchorages *** NS * NS
Deviance explained 29.1 % 21.5 % 36.7 % 20.0 %
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either season (Table 3 and Fig. 5),. During the summer there appears to be
two distinct groups of non-AIS vessel traffic that are associatedwith density
of anchorages at different spatial scales.

When we combine GAM output layers for AIS and non-AIS vessel traffic
(Fig. 4: Proportion Non-AIS), there is a considerable shift in the predicted
Fig. 4. Summer (top row) and winter (bottom row) AIS and non-AIS predicted, and t
collected from NASP imagery.
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proportion non-AIS from summer to winter, with a greater number of 2.5.
km x 2.5 km grid cells estimated with a higher proportion non-AIS during
the summer. Predicted proportion of non-AIS summer traffic tend to domi-
nate cells close to shore, particularly in the Strait of Juan de Fuca and the
Southern Gulf Islands, but also extends out into the middle Strait of
Georgia from Vancouver Island (between Nanaimo and Courtenay) to-
wards Texada Island (Fig. 4). Non-AIS vessels tend to avoid traffic separa-
tion lanes, which is clearly seen in the Strait of Juan de Fuca. Similar
patterns occur during the winter (Fig. 4), with higher proportions of non-
AIS vessels near the coast, particularly in the Strait of Juan de Fuca near
Sooke, and extending out from mid Vancouver Island towards Texada Is-
land. However, there was a noticeably disproportionate increase in non-
AIS traffic in central Strait of Georgia. As well, the proportion of non-AIS
traffic is considerably lower inside the traffic separation scheme lanes for
both seasons, particularly in the Juan de Fuca.

Density surfaces from the GAMs based on NASP collected data indicate
that there are a higher number of output grid cells (2.5 × 2.5 km) with a
higher proportion of non-AIS vessels during the summer than winter
(Fig. B.1). During the summer, over 50 % of grid cells are estimated to
have 73 % non-AIS vessel traffic or higher (median), and 20 % of cells
with 92 % non-AIS or higher (80th percentile). Distribution of cell fre-
quency is muchmore even across the range of proportion non-AIS estimates
for thewinter GAM,where themedian (50th percentile) occursmuch closer
to 50 % non-AIS (Fig. B.1), and the 80th percentile occurring near 80 %
non-AIS.

3.3. NASP estimates within Photobot’s field of view (FoV) overlooking Boundary
Pass

There were six GAM prediction nodes (separated by 1 km) located
within the FoV of the Photobot system overlooking Boundary Pass. Models
based on summer NASP data predicted 53–68 % non-AIS traffic for each of
he proportion non-AIS tracked vessel traffic. GAM density surfaces based on data

http://2.5.km
http://2.5.km


Fig. 5. Partial prediction plots from summer and winter best-fit GAMs.
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the nodes, and models based on winter data predicted 38 % to 66 % non-
AIS traffic. This suggests that our GAMs underpredicted the non-AIS pro-
portion of vessel traffic during the summer (Table 1: 72 % observed total
non-AIS vessel traffic) and overpredicted this proportion traffic during the
winter (Table 1: 25 % total observed non-AIS).

4. Discussion

In this study, we introduce and develop novel systems andmethodology
for acquiring and analyzing marine vessel traffic data pulled from optical
imagery, and compare these data with vessel data collected using in-situ
AIS receivers. Our systems and methodology provide complementary mea-
sures of uncertainty (i.e., proportion of vessel traffic not captured by AIS) in
that vessel data collected using our Photobot provide high temporal resolu-
tion in a restricted area (within the camera FoV), and our analyses based on
NASP data provide high spatial resolution that extends across our study re-
gion in the Salish Sea. As well, our Photobot systemprovided sufficient data
over a short time span, allowing us to break down temporal patterns among
our various vessel classes.

Based on Photobot data collected during 2017, 72 % of all traffic mov-
ing through Boundary Pass during the summer is not captured by AIS.
These vessels are mostly recreational, with peak traffic occurring during
July and August. During the winter, the proportion of non-AIS vessels
drops to around 25 %. As well, the proportion of non-AIS traffic increases
during the weekend for both seasons, but the increase during the winter
is disproportionately higher during the weekend probably because recrea-
tional boating likely occurs over longer periods during the summer
(i.e., extends beyond weekend activities). Furthermore, we found that ves-
sel classes are unequally represented by AIS data. Cargo, tanker, tug, and
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passenger vessels are nearly 100 % detected using AIS data collected by re-
ceivers in situ (Table 1), resulting in a high degree of certainty when using
AIS to indicate threat levels associated with these vessel classes. There was
awide range of uncertainty for the remaining classes that ranged from34 to
91 % non-AIS traffic in summer and 8–96 % in the winter, with non-AIS
traffic dominating recreational vessels (Sailboat and Motorcraft), as well
as some of the smaller commercial vessel classes (Ecotourism and Fishing).

Based on NASP data, the highest uncertainty with AIS based threat esti-
mates is concentratedmid Strait of Georgia (Fig. 4 coastal Vancouver Island
between Nanaimo and Courtenay), southern Gulf Islands, and the north
shore of Juan de Fucawhere recreational traffic would be highest. This pat-
tern is consistent between seasons, though the clusters are more tightly as-
sociated with important marinas during the winter found in Sooke harbour
(Juan De Fuca), on or close to the Southern Gulf Islands, and mid Strait of
Georgia. As well, non-AIS traffic tends to occur closer to shore than AIS traf-
fic, and this association is much stronger during the winter than during the
summer (Figs. 4& 5). The close association of non-AIS traffic with marinas
and shorelines during the winter probably reflects avoidance of bad winter
weather. During the long stretches of favorable weather during the sum-
mer, non-AIS vessels are more likely to travel farther from marinas and
shorelines. Seasonally our NASP data based GAMs predicted that 50 % of
grid cells contained 61 % or higher non-AIS traffic during the winter, and
72 % non-AIS traffic or higher during the summer (Fig. B.1).

At this point, it is important to note that effort was not heterogeneous
for either Photobot or NASP data collections. There was a possibility that
we missed vessels in our Photobot imagery. In particular smaller non-AIS
vessels tended to travel faster and closer to shore, where the FoV is
narrower. However, our wake analyses indicate that our rates of missed de-
tections were quite low (2.7 % or less). As well, the NASP effort was low or
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non-existent over some areas proximate to high densities of marinas, such
as south and west of Vancouver or northern Haro Strait (see Fig. 4 - Serra-
Sogas et al., 2021). NASP provided imagery and AIS data that were col-
lected opportunistically, and flight paths reflected operational require-
ments unrelated to our pilot study (see Serra Sogas et al., 2021).
Including data collected from these areas with high densities of marinas,
likely would have emphasized these areas as relatively high proportion of
non-AIS, and de-emphasized other areas we have currently identified in
this study.

Furthermore, our NASP data-based GAMs accounted for only 20–37 %
of the observed variability in vessel detections for non-AIS and AIS tracked
vessels during the winter and summer (Table 3: Deviance Explained). We
expect our GAM performances would improve with sufficient data to
model vessel classes separately, which in turnwould allowus to statistically
eliminate unassociated predictor variables and increase the precision of our
models. These improvements in GAM performance would have likely re-
sulted in FoV located GAM nodes predicting a proportion of non-AIS traffic
closer towhat was estimated based on data collected by the Photobot. How-
ever, we emphasize that the GAMs were predicting non-AIS proportions
over the entirety of the Salish Sea and their precision would be limited at
smaller scales (such as the FoV). Alternative modeling approaches such as
those based onmachine learning algorithmsmaywork better for predicting
non-AIS traffic at both larger and smaller scales. As well, we expect that
there are important drivers for some of the vessel classes that we did not in-
clude in our models such as proximity to urban centres. Nevertheless, since
we categorized our GAM results into quantiles (reduced precision), our
GAMs help improve our understanding of the relative spatial distribution
of AIS and non-AIS traffic, and our maps with proportional categories of
non-AIS provide solid information for interpreting howwell AIS represents
traffic seen in various sub-regions of the Salish Sea.

Both photobot and NASP rely on optical sensors or cameras that can be
hampered by visibility, and hence our vessel data collection periods were
constrained to conditions favoring small vessel traffic (i.e., daytime and
calm conditions). Radar-based systems would be better for quantifying ves-
sel traffic in absolute terms. However, because AIS does not perfectly cap-
ture marine traffic even for vessels required to carry AIS (for example see
(Zhang et al., 2019, Liang et al., 2021), our optical techniques have some
advantages over radar based systems in that at least some of the AIS infor-
mation can be verified. In particular, vessel traffic can be categorized more
precisely by vessel type for both AIS and non-AIS traffic using optical imag-
ery. Nevertheless, some of the AIS-based error in our study could not be re-
solved with the optical imagery. This source of error occurred primarily
during thewinter when some vessels identified in the imagery as legally ob-
ligated to carry AIS were apparently not broadcasting AIS (Table 1). As
well, there was a small proportion of vessels (3 %, Table 1) that could not
be identified as requiring AIS or not. Comprehensive techniques such as
the Multi-View Feature Fusion Network (MVFFNet; Zhang et al., 2019)
should help resolve these outstanding errors introduced byAIS, andwe pro-
pose that our novel vessel traffic data collection techniques based on optical
imagery may in turn, help learning based systems such MVFFNet improve
their performances.

4.1. Uncertainty assessing marine vessel associated threats based on AIS

We have introduced novel data collection and analytical techniques for
temporally and spatially estimating thefirst uncertainty described in the in-
troduction for using AIS as a proxy for vessel associated threats; the propor-
tion of vessels not captured by AIS. In the following section we discuss this
uncertainty in terms of how it relates to threats often indicated using AIS.

Based on our results, AIS can serve reliably as a proxy for threats from
larger vessel traffic such as ship strike (risk from smaller vessels notwith-
standing) in the Salish Sea. AIS data have been used in the Canadian Pacific
Region as an index of risk exposure to ship-strikes for large whale species in
regions dominated by larger vessel traffic (i.e., Cargo, Tanker, and large
Passenger vessels such as cruise ships) (Nichol et al., 2017), which are ves-
sels classes that we have shown are well represented by AIS in our study
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region. AIS data also allow for improved predictions of likely interactions
between vessels and cetaceans with better estimates of potential impacts
(Blondin et al., 2020). Speed of vessel is an important factor determining le-
thality of a ship-strike (Vanderlaan and Taggart, 2009), and care must be
taken when integrating speed from AIS data (Simard et al., 2014; Nichol
et al., 2017). Speed of vessel can be associated with the third uncertainty
we described above; “accuracy of integrated information in AIS data”.

Ship-strike is considered one of the most important challenges to con-
servation and recovery of large whales (DFO, 2017a) and clearly a concern
SRKWas well (DFO, 2017b). Increasing observations of large whale species
(primarily Humpback Whales – Megaptera novaeangliae as well as Gray
Whales - Eschrichtius robustus) (Calambokidis et al., 2018) coupled with in-
creasing large vessel traffic is resulting in an increased risk of ship-strike in
our study region. A voluntary vessel slow down initiative stewarded by the
Port of Vancouver Authority (ECHO – Enhanced Cetacean Habitat and Ob-
servation program: https://www.portvancouver.com/environmental-
protection-at-the-port-of-vancouver/maintaining-healthy-ecosystems-
throughout-our-jurisdiction/echo-program/) may be mitigating this risk,
and AIS (coupled with acoustic data) has been used to test the effectiveness
of these measures (Joy et al., 2019). AIS proved essential for testing the ef-
fectiveness of similar voluntary vessel slow-downs initiatives implemented
in New Zealand (Ebdon et al., 2020) and the US (Redfern et al., 2019).

Although the risk of ship-strike from smaller vessels, which are very
under-represented by AIS data, for these large cetacean species has never
been assessed in our study area, a few studies have shown that even small
vessels can cause fatal injury particularly when travelling at high speed
(Kelley et al., 2020; Schoeman et al., 2020). Furthermore, small-vessel-
strike risk is likely increasing with the increase in the abundance of small
vessels, particularly recreational vessels, and cetaceans in near shore
areas. As well, collisions with smaller vessels could play a much bigger
role challenging the conservation or recovery of smaller organisms such
as sea otters (Rudebusch et al., 2020), which are currently expanding
their distribution in British Columbia (Nichol et al., 2020).

The effects of anthropogenic disturbance on aquatic birds in coastal and
freshwater habitats in general is well documented (for a review see Carney
and Sydeman, 1999, Steven et al., 2011, Fliessbach et al., 2019). A number
of studies have focused on potential impacts from vessel traffic by measur-
ing flight initiation distances (FID) as an indication of sensitivity to vessel
presence or using spatial distributions to indicate whether or not marine
bird species are avoiding regions with higher intensity of vessel traffic
(Kaiser et al., 2006; Schwemmer et al., 2011). Some of these studies focused
on interactions with smaller vessels that are much less likely to be tracked
by AIS (Rodgers and Schwikert, 2002; McFadden et al., 2017) including ca-
noes (Glover et al., 2015). Boat speed and type are important factors con-
tributing to disturbance (Burger, 1998; Ronconi and St. Clair, 2002;
Burger et al., 2019).

There has been a considerable amount of research documenting impacts
from recreational boating on fish (Whitfield and Becker, 2014). Similarly,
vessel presence has been shown to negatively impact marine mammals be-
havior. For example, boat presence has been shown to reduce foraging ac-
tivity of SRKW in the Salish Sea (Lusseau et al., 2009) and bottlenose
dolphins in Scotland (Tursiops truncatus; Pirotta et al., 2015), and elicit
short-term responses in bottlenose dolphins (Tursiops sp.) in Australia
(Bejder et al., 2006a) that can lead to longer term declines in abundance
(Bejder et al., 2006b). Disturbance from vessel presence (including noise)
has been recognized as one of the principal impediments to the recovery
of the SRKW in Salish Sea (Ferrara et al., 2017), particularly when coupled
with low prey abundance (Murray et al., 2021). However, much of this con-
cern focuses on smaller and typically tourist vessels (for example see Seely
et al., 2017), which are unevenly represented by AIS in our region at the
time of this study. A recently conducted research project, Whale-watching
AIS Vessel movement Evaluation (www.waveproject.ca), utilized AIS
(installed voluntarily by participating organizations) for the classification
of whale-watching vessel movement through agent-based modeling
(Nesdoly, 2021). The results from this probabilistic state-based classifica-
tion model provide information on when and where whale-watching

https://www.portvancouver.com/environmental-protection-at-the-port-of-vancouver/maintaining-healthy-ecosystems-throughout-our-jurisdiction/echo-program/
https://www.portvancouver.com/environmental-protection-at-the-port-of-vancouver/maintaining-healthy-ecosystems-throughout-our-jurisdiction/echo-program/
https://www.portvancouver.com/environmental-protection-at-the-port-of-vancouver/maintaining-healthy-ecosystems-throughout-our-jurisdiction/echo-program/
http://www.waveproject.ca
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vessels were likely observing wildlife. As a proxy for cetacean location, this
information can informmarine policy decisions, and has the potential to be
used as a regulation compliance tool.

There is a growing body of literature describing noise impacts on ma-
rine taxa and their ecosystem (Duarte et al., 2021), including important
prey species of fish (Ivanova et al., 2020). Coastal waters are key habitats
for many marine species, but these shallower areas are also prone to under-
estimations of vessel noise levels by those models that utilize AIS data be-
cause these are the areas where smaller boats (e.g. recreational vessels)
that are less likely to broadcast AIS dominate (Pine et al., 2016;
Hermannsen et al., 2019). The under-representation of vessel traffic in
shallow ecosystems closer to shore is consistent with results from our
study. Additionally, shallower waters effectively act as high pass filters
(Forrest et al., 1993) and as such significantly increase the transmission
loss of low-frequency sound, including those low-frequency components
of vessel noise. Consequently, while low frequency noises (such as those
produced by larger, distant vessels) may not pose a notable concern within
coastal areas, mid-high frequency noise from closer sources, produced by
smaller, non-AIS boats may represent a significant impact to local
soundscapes (Hermannsen et al., 2019). This will result in negative impacts
on species that rely on these areas to carry out vital life functions such as
foraging, breeding and resting (Putland et al., 2018; Wisniewska et al.,
2018; Sprogis et al., 2020).

Large scale catastrophic oil spill risk assessments and prevention poli-
cies rely on marine vessel traffic metrics and typically focus on larger ves-
sels that either transport crude oils and refined products or store large
quantities of oil products as fuels. Traffic metrics for these assessments
have been effectively based on AIS for over a decade (Eide et al., 2007).
However, it has been estimated that smaller chronic oil pollution represents
a much larger contribution of oil input into the marine environment, and
earlier assessments pegged recreational vessels and activities largely re-
sponsible for this input when 2-stroke outboard engines were prevalent
(NRC, 2003). Recent estimates attribute less input to recreational vessel
traffic per se, given the recent shift to predominately 4-cycle outboard mo-
tors, yet input from this category of vessel traffic remains considerable
(GESAMP, 2007). Furthermore, in Canada’s Pacific Region, approximately
90% of oil pollution observations observed by Transport Canada’s National
Aerial Surveillance Programare associatedwithmarinas (Serra-Sogas et al.,
2014; Berry et al., 2018). Hence, AIS used as a proxywould represent only a
fraction of actual oil input and this fraction would vary across regions and
over time.

Larger vessels, which are well represented by AIS in our region, are im-
portant contributors to damage to marine habitats caused by anchoring
(Deter et al., 2017;Watson et al., 2022) and are important vectors for intro-
duced invasive species (Herborg et al., 2009). Both Deter et al. (2017) and
Herborg et al. (2009), as well as Carreño and Lloret (2021), emphasize the
important role that smaller vessels (i.e., recreational) may play in terms of
anchor damage and introduced species, and recognize the lack of informa-
tion available for this category of vessels. Recent work assessing and iden-
tifying recreational vessels as important vectors for invasive species relied
on questionnaires to collect traffic information rather than utilizing AIS
(Simard et al., 2017). Similarly, threats from fishing are not well repre-
sented by AIS in Canada, with recent studies relying on alternative sources
of information on fishing activities (Fox et al., 2021; Morrow et al., 2022).

Here we provide some measure of uncertainty that can help correct im-
pact assessments based on AIS, and improve interpretations of these assess-
ments potentially improving science-based policy. Our results can inform
further studies assessing these threats and identify where and when we
need to improve our understanding of vessel traffic and associated stressors.
Uncertainty still remains with respect to how much non-AIS vessel traffic
contributes to the various threats we have discussed here, which requires
further research. Also AIS-B continues to be implemented voluntarily, and
may prove to be a useful data source for improving our understanding of
recreational vessels and others currently not required to broadcast AIS,
but uncertaintymust be similarly characterized as AIS-B transducers broad-
cast with lower power and are unevenly implemented across vessel classes.
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5. Conclusion

We believe that our methodology is transferable to other regions of the
world and could provide useful data on vessel traffic that is otherwise
unreflected in threat models based on AIS alone. The camera system has
been developed to be very autonomous with solar power and connectivity
via a cellular or satellite networks, and hence, can be installed anywhere
there is a concentration of vessel traffic within optical range of a land fea-
ture. Ideally, these locations would also be subject to aerial surveillance
programmes with crew that were willing to collect AIS and opportunistic
video of vessel traffic (see Serra-Sogas et al., 2021). These surveillance
programmes could be military based or pollution specific such as the aerial
surveillance programmes in Europe in support of multinational agreements
covering shared seas such as the North Sea (the Bonn Agreement: https://
www.bonnagreement.org/activities/aerial-surveillance) and the Baltic Sea
(HELCOM: https://helcom.fi/aerial-surveillance-and-regional-cooperation-
remain-key-in-detecting-oil-spills-in-the-baltic-sea/).

Quantifying the proportion of vessels not captured by AIS is an impor-
tant first step for improving assessments of threats associated with vessel
traffic when basing these assessments on AIS. We believe this is the most
comprehensive assessment of how well AIS represents vessel traffic in a re-
gion, with alternative novel methodology that are highly complementary.
The GLMs based on data pulled from imagery collected using our land-
based AIS-camera systems identifying strong temporal trends (weekends
and seasons) in terms of AIS vs non-AIS traffic, and the GAMs based on
NASP collected imagery provided spatially explicit estimates of AIS and
non-AIS traffic.

However, recreational vessel traffic is considerably under-represented
byAIS throughout the Salish Sea, and the proportion of non-AIS traffic is in-
consistent among subregions and over time. For somemarine traffic associ-
ated threats such as noise, smaller non-AIS vessel traffic can play a
dominant role impacting marine ecosystems, and impact assessment
based on AIS that do not account for this uncertainty can result in unaccept-
ably low estimates.
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